
tractor)ort 4265

S, Benten,

and Aruna V.Ka mana n

-.-- m

. -- . _.-_2__ _..... - __

....-- 7".2=

\

NASA Contractor Report 4265

Force User's Manual

A Portable, Parallel FORTRAN

Harry F. Jordon, Muhammad S. Benten,

Norbert S. Arenstorf, and Aruna V. Ramanan

Computer Systems Design Group

Department of Electrical and Computer Engineering

University of Colorado

Boulder, Colorado

Prepared for

Langley Research Center
under Grant NAG1-640

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990

TABLE OF CONTENTS

Io Introduction

II, Description of Force Macros:

A. Macros Specifying Program Structure
B. Variable Declarations
C. Parallel Execution

D. Synchronization

5

6
10
13

2O

III. Restrictions on Force Macros 24

IV. How to Invoke Force

A. Flex/32
B.
C.
D.
E.
F.
G.

(Flexible Computer Corp.)
Multimax (Encore Computer Corp.)
Balance (Sequent Computer Corp.)
Alliant FX/Series (Alliant Computer Systems Corp.)
Cray 2 (Cray Research, Inc.)
Cray Y-MP (Cray Research, Inc.)
Convex C220 (Convex Computer, Inc.)

25

25
26
27
27
28
29
29

V° Sample Program Listing 30

VI. References 33

PRECEDING PAGE BLANK NOT FILMED

ill

I. Introduction

The principle of global parallelism in parallel programming was introduced by

Jordan[l], through a set of FORTRAN macros called Force macros. These macros

support the construction of programs to be executed in parallel by a "Force of

processes." The number of processes is left unspecified at compile time, but is poten-

tially quite large. Force provides a FORTRAN-style parallel programming language

utilizing an extensive set of parallel constructs. The programmer, insulated from pro-

cess management, is left free to concentrate on the synchronization issues of parallel

programming.

A Force module, i.e., a main program or subroutine, consists of regular FOR-

TRAN 77 statements that will be executed by all processes from the first line of the

program listing, unless limited by a process synchronization construct. Macros in

Force support parallel execution of DO loops using pre-scheduled and self-scheduled

algorithms. Force includes constructs to allow for mutual exclusion, synchronization,

and/or sequential execution when necessary, and constructs for data based control of
execution.

A key feature of Force is its management of variables in an MIMD environment.

Force maintains six classes of variables. Each class in turn supports all the standard

FORTRAN variable types: INTEGER, REAL, COMPLEX, etc. The parallelism class

of a Force variable determines how it is accessed by different processes and may be

Private, Shared, or Async. Each of these three classes will also inherit from FOR-

TRAN the storage class of COMMON among program modules or local to one

module, yielding six classes. Private variables have separate instantiations for each

component process of Force. Shared variables have only a single instantiation and are

accessible by all processes of Force. Async, or "asynchronous," variables have a

"full/empty" state associated with them, and are shared between processes as well.

Interprocess communication is achieved through use of Shared or Async variables.

The FORTRAN COMMON mechanism is used to implement Force COMMON.

Force variable declarations are meant to supersede FORTRAN variable declarations.

However, ordinary FORTRAN declarations will normally be treated as Private, so that

sequential FORTRAN modules may be called from Force modules.

This manual will describe Force constructs in detail. Force constructs are divided

into four categories: program structure, declaration of variables, parallel execution,

and synchronization. The programmer using Force writes a program that is to be exe-

cuted simultaneously by an arbitrary number of processes. This number is a run-time

parameter. The program may consist of many Force modules. A Force module is

analogous to a FORTRAN main program or subroutine, except that a Force module is

called and executed by all of the processes. Force constructs are summarized in

TABLE-I. Triangular brackets, < >, are used to indicate required parameters; square

brackets, [], are used to indicate optional parameters. An example of a complete

Force program is shown later in this manual.

TABLE-I Force Program Constructs

Program Structure:

Force <name> of <# of procs> ident <proc id>
< declaration of variable-s> _-.... _: _

[Externf < Force module name >]

End declarations

<Force program>
Join

END

• • . • •

Forcecall <name>([parameters])

Forcesub <name>([parameters]) of <# of procs> ident <proc id>
< declarations >

[Externf < Force module name >]

End declarations

< subroutine body >
RETURN

END

Declaration of Variables:

Private <FORTRAN type> <variable list>

Private Common/<label>/<FORTRAN type> <variable list>

Shared <FORTRAN type> <variable list>

Shared Common/<label>/<FORTRAN type> <variable list>

Async <FORTRAN type> <variable list>

Async Common/<label>/ <FORTRAN type> <variable list>

TABLE-I Force Program Constructs (continued)

Parallel Execution:

Pcase on <variable>

<code block>

[Usect]

[Csect (<condition>)]

End pcase

Scase

[Csect (<condition>)]

<code block>

[Usect]

End scase

<n>

Presched Do <n> <var> = <i1>,<i2>[,<i3>]

<loop body>
End Presched Do

<n>

Selfsched Do <n> <vat> = <i1>,<i2>[,<i3>]

<loop body>

End Selfsched Do

<n>

Pre2do <n> <varl>=<il>,<i2>[,<i3>]; <var2>=<j l>,<j2>[,<j3>]

<doubly indexed loop body>
End Presched Do

<n>

Self2do <n> <varl>=<il>,<i2>[,<i3>]; <var2>=<jl>,<j2>[,<j3>]

<doubly indexed loop body>

End Selfsched Do

<n>

Askfor Do <n> Init : <i>

<loop body>
Critical <var>

More work <j>

<put work in data structure>
End critical

<loop body>
End Askfor Do

3

Synchronization:
Barrier

< codeblock >

End barrier

Critical <Iock-var>

< code block >

End critical

Void <async variable>

Produce <async variable> = <expression>

Consume <async variable> into <variable>

Copy <async variable> into <variable>

... Isfull(<async variable>) ...

II. Description of Force Macros

The macros are divided into four groups: program structure, variable declaration,

parallel execution, and synchronization. The user of Force macros writes a single

parallel main program, zero or more parallel Force subroutines, and zero or more sin-

gle stream subroutines to be executed by a single process. When writing the parallel

main program and parallel subroutines, the macros given in the previous table and

described below may be used. The single stream subroutines and all of the code

except the macros in the parallel routines are in FORTRAN 77 and familiarity with

that language is assumed.

The number of processes executing a Force program is a parameter that the user

will supply at run time. What actually happens is that execution of a Force program

begins with a "driver" routine. The driver will determine the number of processes,

create these processes, all of which will then transfer control to the user main program.

This procedure is invisible to the user and programmer.

Two terms are used when referring to the parallel execution macros. These terms

are "pre-scheduling" and "self-scheduling." Pre-scheduling refers to a division of labor

(usually based on the local process index) that is fixed at compile time and indepen-

dent of the actual work being done. Self-scheduling refers to a dynamic, run time

allocation of work to processes. Self-scheduling is more sophisticated, and regulates

the work load better; but it requires greater overhead.

We have adopted the following convention: the first Force keyword to appear on

a line must have the first letter capitalized with the remaining letters in lower case.

Additional keywords on the same line are case insensitive. For example, Barrier

would be recognized by Force preprocessor, but barrier or BARRIER would not. A

pattern matching preprocessor is used, and this convention makes confusion between

Force keywords and FORTRAN variable names less likely.

Syntactically, Force macros adhere to FORTRAN standards and may be continued
on two or more lines. A few differences between Force macros and standard FOR-

TRAN syntax exist; these will be given later in the restrictions section.

5

II A. Macros Specifying Program Structure

Force

The Force macro declares the start of a parallel main program and has the fol-

lowing syntax:

Force <name> of <nproc> ident <me>

The Force statement sets up the parallel environment. All processes begin execu-

tion from this point on, until they are terminated by the Join statemen_ _ <nproc>

and <me> are both user named integer variables, with <nproc> containing the

number of processes in Force, and <me> containing a unique identifier for each

process (between 1 and <nproc>). <nproc> and <me> will be declared automati-

cally. Values are assigned automatically to <nproc> and <me>, but these values

must not be changed by the user program.

The Force main program ends with a Join statement usually followed by the
FORTRAN END statement. The Join sta[ement terminates all but one of Force

of processes. This last process will return control to Force driver program. An

example:

Force MYFORCE of COUNT ident MYINDEX

<declarations>

End declarations

C

C

C

C

c
C

C

C

Force body with

COUNT is a user named shared integer
variable which will receive the number

of processes executing the pro_a/n.

MYINDEX- is a user named private integer

variable that will be a unique

index for each process, numbered
between 1 and count.

Join

END

End declarations

This macro call terminates the declarations section of a Force module and begins

its executable code. It marks the place to insert declarations generated automati-

cally by the macros and may generate some executable code. End declarations

must follow the last declaration statement and precede the first executable state-
ment Of a Force module.

6

Some examples using the End declarations macro are given on the pages describ-

ing the Force and Forcesub macros. Please note, every Force or Forcesub state-

ment must have exactly one End declarations statement following it at some

point in the program listing for that module.

Join

Join terminates execution of the parallel main program. It is an executable state-

ment, but is listed with the macros determining program structure because it is, in

some sense, the inverse of the Force statement. Instead of creating a Force of

processes, Join will terminate all processes except the last one to reach it. This

last process returns to the Force driver program, where it too will be terminated.

Note, the non-executable FORTRAN END statement is still necessary.

Forcesub

The Forcesub statement declares the start of a parallel subroutine and has the

general form:

Forcesub <name>(<parameter list>) of <nproc> ident <me>

This statement is roughly analogous to the Force statement. Each process will

maintain its local copy of its process index, <me>, from the calling module; how-

ever, this index may be renamed in the Forcesub header. Declarations including

Private, Private Common, Shared, Shared Common, Async, or Async Common

statements may come between a Forcesub statement and the following End

declarations. There is no special Force keyword to terminate a parallel subrou-

tine. The FORTRAN RETURN statement is used to return control to the calling

module. The arguments passed to a Forcesub statement via the parameter list

should be declared using only normal FORTRAN declarations. Such arguments

retain the parallelism class, Private or Shared, with which they were defined in

the calling module. Current implementations do not support asynchronous vari-

ables passed as parameters. The following is an example of a Forcesub:

7

C....... MATRIX MULTIPLICATION SUBROUTINE: C=A*B ---

Forcesub MULT(A,B,C,N1,N2,M1) of NPROCS ident ME

INTEGER N1,N2,M1

REAL A(N1,N2), B(N2,M1), C(N1,M1)

Private INTEGER I,J,K

End declarations

C Initialize C ...

100

Pre2do 100 I= 1,N1 ; J=I,M1

C(I,J) = 0.0

End presched do

C

200

300

The multiplication process ...

Presched DO 300 I=I,N1

DO 200 J=I,M!

DO 200 K=I,N2

C(I,J) = C(I,J) + A(I,K)*B(K,J)

End presched DO

RETURN

END

This parallel subroutine can be called with call statement as follows:

Shared REAL A(100,50), B(50,100), C(100,100)

Private N1, N2, M1

End declarations

Forcecall MULT(A,B,C,N1 ,N2,M 1)

Externf

The syntax of this macro is as follows:

Externf<Force module name list>

Externf is used to inform the Force compiler/preprocessor about external For-

cesub modules that are called using the Forcecall executable statement. "External

modules" refer only to Force modules that are not included in the same file as the

Force main program. Modules defined below the main Force program (within the

same file) are not required to be declared Externf. This feature preserves the

"separate compilation" feature of the FORTRAN language. When a list of exter-

nal module names is specified using Externf, names in the list should be separated

8

by commas. Someexamples:

Externf INTMAT
Externf INTMAT, OUTMAT

The Externf statement is placed in the declarations section of a Force program.

Externf may appear in any Force module that has itself been declared Externf.

Consider the following example. Force modules A, B, and C each appear in

separate files which are perhaps to be compiled separately. If the Force main

program, A, calls Forcesub B, which in turn calls Forcesub C, then A must

declare B using Externf, and B would declare C as Externf. The point is that as

long as C is declared Externf in B, which is declared in A, then A need not

declare C as Externf. Multiple declarations, while not required, are allowed.

Forcecall

The Forcecall executable statement is used to invoke parallel subroutines that

have been declared as named Forcesub modules.

Forcecall (<parameter list>)

The entire Force of processes will execute the parallel subroutine. However,

Forcecall does not cause synchronization. Forcecall differs from the regular

FORTRAN CALL only in that provisions are made to automatically pass the

local process identifier <me> for each process. Normal FORTRAN scope rules

apply to Force variables. Note, Async variables may not be included in the param-

eter list, but may be passed through an Async Common block instead.

9

II B. Variable Declarations

The implementation of Force as a preprocessor, which does not construct a sym-

bol table, requires that all type information be included in the Private or Shared

declarations, so that it is available during the preprocessing of that statement. It

should be noted that FORTRAN IMPLICIT typing of variables is allowed under Force,

and that all implicitly typed variables will be of Force variable class Private.

Private

Private <type> <variable list>

When a variable is declared Private, then each process of Force maintains its own

storage space for that variable, even though the variable is named only once in

the main program listing.

For example:

Private DOUBLE PRECISION X (100,100)

Private INTEGER I, J, K

_vate CHARACTER*80 STRING1

Such variables are normally used for arithmetic temporaries or index values

which have distinct Values for each process of Force.

Private Common

A Private Common variable is Private in the sense defined above, but it may be

Common between Force modules. This decimation Would appear, with the Var-

ables specified in the same order, in each of the modules that wished to include

the Common variables. The syntax is as follows:

Private Common/<label>/<type> <variable list>

Unlike FORTRAN 77, Force Common variables are typed within the same state-

ment that declares them to be Common. They must also be dimensioned in that

statement.

For example:

Private Common / MYCOPY / REAL TIME(15)

Private Common / MYCOPY / INTEGER POS, SPEED

Private Common / GRID / COMPLEX X, Y

From the example, we can see that variables of different types may be combined

within the same Common block, but this requires different declaration statements.

As in FORTRAN 77, it is the programmers responsibility, to insure that all

Force modules that use a given COMMON block, specify the variables of

that COMMON block in the proper order. Also note that arrays are dimen-

sioned on this line. FORTRAN "blank COMMON" is not allowed.

10

Shared

When a variable is declared Shared, then only one copy of that variable is main-

tained by all of the processes in Force. In this manner, multiple processes may

operate on and communicate through shared memory locations. Care must be

taken when multiple processes try to modify a Shared variable all at once. Nor-

mally, one would modify a Shared variable only within a critical section of the

program. Regular FORTRAN declarations follow the Shared keyword. The syn-
tax is as follows:

Shared <type> <variable list>

For example,

Shared INTEGER I, J

Shared REAL A(800), B(800)

This example declares I and J to be shared integers and declares A and B to be

real vectors of the specified dimension.

Shared Common

This statement has the following syntax:

Shared Common /<label>/<type> <variable list>

A Shared Common variable is Shared between processes as defined above. In

addition, Shared Common variables may be common between Force modules.

That is to say, different processes in different Force modules (subroutines) all
have access to the same variable.

Again, as in Private Common, the type of a variable is declared on the same line

with the Common declaration. Variables of different type may be combined

within the same Shared Common block, but this will require the use of several

declaration statements. Once again, as in FORTRAN 77, it is the programmer's

responsibility to preserve the ordering of variables in a Common block. An

example:

Shared Common /PENPOS/ DOUBLE PRECISION X,Y

Shared Common /PENCOL/ INTEGER COLOR(8)

Async

This statement has the general form:

Async <type> <variable list>

Asynchronous variables are shared between processes; that is, they have only one

instantiation for all processes. The distinguishing feature of an Async variable is

its "full/empty" state. The use of these variables is governed by the Produce,

11

Consume, Copy, Void, and Isfull macros which are described later. Briefly, an

asynchronous variable may be consumed or copied only if it is "full," and pro-

duced only if it is "empty." Thus, Async variables may be used to implement data

based synchronization.

For example, the following Force program fragment illustrates the use of this

macro:

Async INTEGER I

Async REAL X, Y, Z

End Declarations

Barrier

Void X

End barrier

Produce X = local_stuff

7Z

Async Common

This statement has the general form:

Async Common/<label>/<type> <variable list>

Async Common variables have all the properties of Async variables described

above. In addition, they may be Common between Force modules that include

this designation. _

=--

12

II C. Parallel Execution

Parallel executioncan be specifiedby three kinds of macro constructs. Two
kinds are related to the DOALL and parallel caseconstructs.The two constructsare
similar to the extent that both involve segmentsof codethat can be executedin any
order. DOALL applies to independentinstancesof a code body for different index
valuesas in loops. The parallel caseconstructappliesto different single streamcode
blocks which are mutually independent.The distribution of work may either be pre-
scheduledor self-scheduled.The third macrois relatedto theAskfor monitor that has

been originally proposed by Lusk and Overbeek[2]. This construct provides a means of

scheduling the execution of a body of a sequential code which may require a dynami-

cally increasing number of executions, as in recursive algorithms. An initial number of

executions of the Askfor loop body is specified and this number may be increased

within the body using the a More work macro.

Pcase

This statement establishes a pre-scheduled parallel case construct which starts

with either of the following constructs:

Pcase

or

Pcase on <var>

The construct consists of a series of independent sections of code, each of which

is to be executed by a single process. The sections are delimited by a Pcase, zero

or more Usect, zero or more Csect and an End pcase statements.

The construct assigns its own private integer variable unless <vat> is used expli-

citly in the second form of the construct. In such cases, the programmer must

declare <var> as a Private Integer variable. In either case, the execution of multi-

ple cases is pre-scheduled using this variable, which is assigned the value i during

the execution of the ith_case. The jth_case will be executed by the process with

local_id equal to (Q-I) mod P)+I, where P is the number of processes.

If there are more processes in Force than there are code sections, then all code

sections will be executed simultaneously. Otherwise some will be executed

sequentially by the same process. Thus care must be taken while using asynchro-

nous variables (producer/consumer) within a Pcase statement. A parallel case

with only one code section is similar to a barrier in that the code is executed by a

single process, but differs in that no synchronization of other processes occurs.

There are slight variations in the implementation of the parallel case construct. An

example of the simplest implementation is given below. Here each task represents

a group of regular (single stream) FORTRAN 77 instructions.

13

Pcasc

<task A>

Usect

<task B>

Usect

<task C>

End pcase

If any oi' t_e single stream code sections are conditional, the Csect Staternent can

be used. The condition is built into_the csect construct. An example when all

code sections are conditional is given below.

Pcase

Csect (<condition>)

<task A>

Csect (<condition>)

<task B>

Csect (<condition>)

<task C>

End pcase

Csect and Usect can both appear in a parallel case construct. The sections on

Csect and Usect outline the variation in implementation of parallel case construct.

Usect

This statement separates multiple single stream code sections of a parallel case.
When Csect is used to start a conditional case section then Usect is not used to

separate it from the previous code section. Also, Usect is not used if there is only
one code section.

Csect

This statement begins a conditional single stream code section of a parallel case

and has the following form:

Csect (<condition>)

where, <condition> is a FORTRAN condition of the same form allowed in a

FORTRAN IF statement.
= : : : :

z

J_

End pcase

The pre-scheduled parallel case construct is terminated by this statement. Note

that some processes may proceed past this point while portions of the parallel

case are still being executed.

14

z

,=

Scase

The Scase statement is an alternative to Pcase in writing a parallel case construct.

When a parallel case is initialized by the statement

Scase

the allocation of the work is done at the execution time rather than being pre-

scheduled. A process receives the next available case section when it finishes a

previously assigned section. The other aspects of a self-scheduled parallel case

construct are the same as the pre-scheduled parallel case construct, except that it

is terminated by an End scase statement instead of an End pcase statement.

In contrast to the Pcase construct, process synchronization is included to ensure

that two instances of a self-scheduled construct, either a parallel case or a parallel

DO loop, are not being executed simultaneously.

End scase

The self-scheduled parallel case construct is terminated by this statement.

Although processes may proceed past this point while portions of the self-

scheduled parallel case are still being executed, no process may enter another

self-scheduled construct (parallel case or loop) or re-enter this one a second time

before all processes have exited.

Presched DO

A pre-scheduled parallel loop is introduced by the Presched DO statement, which

has the following form:

Presched DO <n> <i>=<il>,<i2>[,<i3>]

This statement must have a body such that instances of the body for different

values of the private variable <i> are independent and can thus be executed in

parallel. Pre-scheduling partitions different values of <i> evenly over processes

in a manner fixed at compile time. Pre-scheduled loops are useful when the exe-

cution time of the loop body is fairly constant. The step size <i3> is optional and

is assumed to be one if it is missing.

The parameters <il>, <i2> and <i3> must be constants or expressions yielding an

integer value. These values must be identical for all processes of Force (i.e., if

Private variables are in the expressions), and they must remain fixed during exe-

cution of the loop. The parallel DO constructs do not nest with each other, how-

ever they may be nested (internally or externally) with normal FORTRAN DO

loops.

For example,

15

PreschedDO 99 J= 1,M1

C(J) = 0.0

99 End presched DO

initializes the the first M1 elements of the vector C to zeros. Note that M1 and

the vector c are assumed to have been declared Shared or Shared Common vari-

ables. Also note that no process synchronization occurs - processes may enter and

leave the loop asynchronously.

a

<n> End presched DO

This statement terminates the body of a pre-scheduled DO loop.

number <n> must match that on the Presched DO statement.

The statement

Selfsched DO
The Selfsched DO statement is an alternative for introducing a parallel loop and it

has the following general form:

Selfsched DO <n> <i>=<il>,<i2>[,<i3>]

The behavior of the SeIfsched DO loop is the same as that of a Presched DO

loop except that the allocation of the work is done at execution time. A process

receives the next unassigned value of the private variable <i> when it finishes its

previous iteration. This tends to even the workload over processes when the exe-

cution time of the loop varies significantly for different values of <i>. The

parameters <il>, <i2> and <i3> must be constants or expressions yielding an

integer value, and this value should remain fixed during execution of the loop.

The implementation generates a Shared temporary variable to handle the shared

loop index. Synchronization is provided to ensure that the execution of different

instances of self-scheduled loops or cases is not overlapped. This means that the

overhead is higher for self-scheduled loops than for pre-scheduled loops.

As was the case with pre-scheduled loops, the parameters <il>, <i2> and <i3>

must be constants or expressions yielding an integer value. These values must be

identical for all processes of Force, and remain fixed while the loop is executing.

The parallel DO constructs do not nest with each other, however they may be

nested (internally or externally) with normal FORTRAN DO loops. For example:

Selfsched DO 99 J= 1,MI

C0) =0.0

IF (J/7 .EQ. J/7.0) CALL HARDWORK(CO))

99 End selfsched DO

would initialize the the first M1 elements of the vector C to zeros, and CALL

HARDWORK if J is a multiple of seven. Note that M1 and the vector C are

assumed to have been declared Shared or Shared Common variables. Also note

i

16

that processesmay enter the loop before all havearrivedand may leavethe loop
beforeall havefinished,but no processmay enteranotherself-scheduledloop, or
re-enter this one a secondtime, until all have exited. Processesmay also not
entera subsequentself-scheduledcaseconstructuntil this self-scheduledconstruct
is complete.

<n> End selfsched DO

This statement ends the body of the self-scheduled DO statement with statement

number <n>.

Pre2do

Doubly indexed DO loops are supported as separate constructs within Force.

Semantic considerations dictate that these be implemented with separate con-

structs rather than to allow nesting of the parallel DO loops.

Pre2do <n> <i>=<il>,<i2>[,i3] ; <j>--<j 1>,<j2>[,<j3>]

Like single-index parallel DO loops, this statement must have a body in which

instances of the body for different pairs of values of the private indices <i> and

<j> are independent. Pre-scheduling partitions different pairs of values of <i>

and <j> evenly over processes in a manner fixed at compile time. Step sizes <i3>

and <j3> are optional, and assumed to be one if one is missing. For example:

Pre2do 99 J= 1,LIM ; K= 10,1,- 1

C(J,K) = A(J,K) + B(J,K)
99 End Presched DO

Note that LIM and the vectors A, B, and C are assumed to have been declared

Shared or Shared Common variables, and I and K are Private variables. Again,

note that no process synchronization occurs - processes may enter and leave the

loop asynchronously.

<n> End presched DO

This statement ends the body of the doubly indexed pre-scheduled DO loop.

parameter <n> must match the <n> used in the Pre2do statement.

The

Self2do

The Self2do statement is a self-scheduled version of the doubly indexed DO loop.

It has the following form:

Selff2do <n> <i>=<il>,<i2>[,<i3>]; <j>=<j l>,<j2>[,<j3>]

17

Schedulingof the indicesis doneat executiontime; processesreceivethe "next"
pair of indicesavailablewhen they are ready to performan iteration of the dou-
bly indexedloop. Self-schedulingregulatesthe workload amongprocessesat a
cost of higher synchronizationoverhead. When loop iterationsrequire approxi-
mately the sameamountof executiontime, then it is moreefficient to usea pre-
scheduledDO loop. Once again, theremust be no datadependenciesbetween
loop bodiesfor different<i>, <j> pairs;this is the programmersresponsibility.

The parameters<il> through<i3> and <jl> through<j3> must be integer con-
stantsor expressions,which remainfixed during a given executionof the Selfl2do

loop. Overlapping executions are prevented for different instances of doubly

indexed, as well as singly indexed, self-scheduled loops. For example:

Self2do 100 I= 1,M1 ; J=I,M1

IF (I .NE. J) THEN

C0,J) = 0.0

ELSE

C0,J) = DTAN(DOUBLE(J*PI/M 1))
END IF

100 End selfsched DO

Processes may enter the loop before all have arrived and leave before all have

finished, but no process may enter a second instance of a self-scheduled loop

before all have exited.

<n> End selfsched DO
This statement terminates the body of a doubly indexed self-scheduled DO loop

as well. The statement number <n> must match that on the Selfl2do statement.

Askfor DO

The Askfor Do statement is a general means of scheduling the execution of a set

of parallel work that may dynamically increase, as in the case of recursive algo-

rithms. It has the following form:

Aslcfor DO <n> init • <i> _::=:: :

This statement must have a body that will be self-scheduled to be executed by

processes of Force <i> times. A typical body will start With a Critical S_fion that

will coordinate the acquiring of some shared data representing a new task into

local variables, such that instances of the body for different values of the local

variables are independent and thus can be executed in parallel. The body of this

construct may also contain a More work statement that will increase the number

of timesthe Aslcfor body will be executed: Once the execution of the Askfor Do

loop starts, processes will not exit from the construct until no more work is left

and all Force processes have completed their scheduled workso t-ha(n-0 new

work can be generated.

18

More work <val>

This statement can optionally appear in the body of the Askfor DO construct. It

will cause the body to be executed <val> more times. Typically it is included in a

Critical section which adds a new task to a shared data structure to be processed

by subsequent execution of the body of the Askfor Do statement.

Consider the following example which starts with the root node of a subtree of a

binary tree and extracts the leaves of this subtree by placing a -1 in the right

pointer of the leaf node. All leaf nodes of the tree have -1 in their left pointer.

Execution begins with a list of nodes to be examined having its first element

Nodes(l) set to the number of the root node of the subtree, and the pointer to the

end of this list, Top, set to one.

Askfor DO 100 Init : 1

Critical index

I = Nodes(Top)

Top = Top + 1
End critical

10 ff (L(I).EQ. -1) Then

R(I) = -1

Else

Critical index

Top = Top + 1

Nodes(Top) = L(I)
More work 1

End critical

I= R(I)

Go To 10

Endif

100 End askfor DO

Originally the tree is represented in the two Shared integer arrays L and R, where

L(I) and R(I) are the left and right pointers respectively, for node I. A leaf node

has a value of -1 in its left node. Top is used as a pointer to the next available

node to be processed. The Askfor Do statement initially has one node to process.

A process which is scheduled to execute the Askfor DO statement will check to

see if the left pointer of this node indicates a leaf. If it does, it will set the right

node pointer of this node to -1 and go back to see if there is more work. If not,

the process will add the left node of the subtree in the nodes to be handled by the

next available process and will go back to check the nodes of the right branch.

<n> End askfor DO

This statement terminates the body of an Askfor Do loop. The statement number

<n> must match that on the Askfor Do statement.

19

II D. Synchronization

Barrier

This statement must be executed by all processes of Force. When all have

reached the Barrier statement, a single process will execute the "body" of the

Barrier', that block of code between the Barrier and End barrier statements.

After the body has been executed by a single process, all the processes of Force

will resume execution after the End barrier statement, and they will have been

synchronize& Note, it is not necessary for the Barrier to have a body at all, but

the End barrier statement is always required. For example:

Barrier

X=X+I

End barrier

Barrier synchronization will cause all the processes to wait at the first Barrier

statement until the last one arrives. A single process will then execute the body

of the Barrier construct, in this case incrementing X by one. After the body has

been executed, then all processes continue at once with statements following the

End barrier statement.

It is the programmers responsibility to place Barriers where they make sense.

For example, placing a Barrier inside a Pcase section of code does not make

sense, since not all processes will reach the Barrier, and those that do will wait

indefinitely for other processors, eventually causing the program to deadlock.

Likewise, Barriers within Self or Pre-scheduled DO loops should be avoided,

since they would also deadlock, unless the number of processes divides evenly

into the number of loop iterations.

End barrier

Paired with the previous statement, this one delimits a section of code executed

by a single instruction stream. Synchronized parallel execution begins after this

statement.

Critical :- =-==_=,=::::= :

Mutual exclusion can be accomplished by named critical sections using the Criti-

cal construct, which has the following form:

Critical <lock-vat>

The critical section is ended by the End critical statement. Use of a Critical sec-

tion guarantees that only one process will be executing any block of code nested
between the Critical and End Critical statements of critical sections with the

same <lock-var> parameter.

2O

The usermustdeclare<lock-var> asa Shared variable, preferably of type LOGI-

CAL. This variable is used as a lock and should contain no other value. Two or

more critical sections may share the same <lock-vat> variable. However, two

critical sections using the same <lock-var> variable cannot execute simultane-

ously. If one wishes to coordinate activities between Force modules, then the

<lock-var> variable may be a Shared Common variable, declared in those Force

modules that wish to use it. For example:

Shared Common/IO/LOGICAL WRITER

End Declarations

Critical WRITER

WRITE(6,10) ME

10 FORMAT(1X,"Me = ",I3)

End critical

End critical

This statement is paired with the nearest unmatched preceding Critical statement

to delimit a critical section. Nested critical sections are allowed; however, there

is the potential for a deadlock to occur if critical sections are improperly nested.

Produce

Produce <async var> = <expr>

If the asynchronous variable <async var> is "empty," the Produce statement

assigns the value of the expression <expr> to <async var> and marks

<async var> as "full." If <async var> is not "empty," the process currently exe-

cuting Produce will wait until <async var> becomes "empty" and then make the

assignment and mark <async var> as "full." These actions occur atomically. The

variable <async var> must have been declared as an asynchronous variable using

the Async statement.

21

Example:

_yate REAL YY
Async REAL XX

End Declarations

Barrier
Void XX

End Barrier

YY = 7.0*COS(A+B)
ProduceXX = YY + 3

Consume

Consume <async var> into <var2>

If the asynchronous variable is "full," then this macro routine will assign the

value of <async var> to <var2> and mark <async vat> as "empty." If it is not

"full," Consume will wait until <async var> becomes "full," store its value, and

mark it as "empty." If multiple processes are executing a Consume statement on

the same <async var>, and if the <async var> is "full," then only one consumer

process will succeed. The others will have to wait until <async var> is set "full"

again (by a Produce statement) before they will have a chance to succeed. The

variable <async var> must have been declared as an asynchronous variable. In

most applications, <vat2> will be Private. For example:

Consume XX into YY

Copy

Copy <async var> into <var2>

This macro routine will store the value of the asynchronous variable <async var>

into <var2> if <async var> is "full," without changing the variable's status. If the

variable is "empty," then Copy will wait until <async var> becomes "full," and

then return its value, and leave it "full." The variable <async var> must have been

declared as an asynchronous variable. For example:

:: :

22

Copy XX into YY

Void

Void <async var>

This macro will unconditionally mark the asynchronous variable <async var> as

"empty." The variable <async var> must have been declared as an asynchronous

variable by the Async statement. Note, asynchronous variables are not necessarily

"empty" when declared; normally one would first Void an asynchronous variable

before using it in a producer/consumer macro. For example:

Void XX

Isfull

lsfulI (<async var>)

This macro "function" will return the logical state of the asynchronous variable

<var>, with TRUE corresponding to "full" and FALSE indicating that the asyn-

chronous variable is "empty." It may be used anywhere that a FORTRAN logical

function would be used. The variable <async var> must have been declared as an

asynchronous variable by the Async statement. For example:

Async REAL XX
Private REAL MYCOPY

End declarations

IF(Isfull(XX)) THEN

Consume XX into MYCOPY

ELSE

<do something else>
END IF

23

III. Restrictions on Force Macros

Force macro implementations on Convex 220, Flex/32, Encore Multimax, Sequent

Balance, Alliant FX/Series and Cray computers adhere to almost all FORTRAN stan-

dards and elements of style except for the following points:

1. Barrier, Forcecall, and Join, and all of the macros that specify parallel execution

must be executed by all the processes executing the parallel program. Skipping

over these constructs by a fraction of the processes may cause a deadlock and

unexpected results. _ = : _ - : : _..................

2. Branching into or out of a body of a Force construct is not allowed and may not

be detected by either Force preprocessor or the FORTRAN compiler and will lead

to unexpected results.

3. Except for the statements closing parallel DO loops, Force statements should not

be numbered, and numbered Force statements will not be recognized by the

preprocessor and will produce FORTRAN syntax errors.

4. Force preprocessor may generate subroutine names using a variation on the name

of a given Force module. For this reason, the first five characters of the name of

a Force module must uniquely identify that module.

5. Asynchronous variables cannot be passed as parameters to other modules or sub-

routines and be expected to behave asynchronously. The Async Common state-

ment must be used for this purpose.

6. FORTRAN BLOCK DATA is currently not supported and thus Shared and

Shared Common variables cannot be initialized statically at compile time.

7. The FORTRAN DATA statement can only be used to initialize Private variables.

8. The following words are used by the M4 macroprocessor used by Force and can-

,

not be used as variables in Force programs:

changequote dumpdef len syscmd

changescom errprint m4exit traceoff

deer eval m4wrap traceon

define ifdef maketemp translit

defn if else popdef undefine

divert include pushdef undivert

divnum iner shift

dnl index sinclude

Finally, it should be noted that the line numbers which are referenced by the error

messages resulting from using the "force" command refer to the .f files and not to

the .frc files.

24

IV. How to Invoke Force

This section will discuss the UNIX shell scripts, force, forcerun, and preforce,

used to invoke Force. Implementations on seven machines will be considered: Flex/32

(Flexible Computer Corp.), Multimax (Encore Computer Corp.), Balance (Sequent

Computer Corp.), Alliant FX/Series (Alliant Computer Systems Corp.), Cray 2 and

Cray Y-MP (Cray Research, Inc.), and Convex 220 (Convex Computer, Inc.).

The force command is a shell command that is used to preprocess, compile and

link Force source programs. The force command takes an argument list of files and

flags and produces a parallel executable output program. We will adopt the convention

that Force source files have a filename ending with a .frc extension. Files in the argu-

ment list with a .frc extension will first be preprocessed to expand Force macros. The

resulting files along with the Force driver program and any other files specified will

then be compiled and linked. These files include those ending with .f, .o, and .a.

The forcerun command is used to execute a Force program. The forcerun com-

mand also specifies the number of component processes to be used by Force program

during that run. The forcerun command has two arguments: the first is the name of

Force executable file, and the second is an integer number representing the number of

processes (processors on Flex/32) to be used for that run.

The preforce command performs only the preprocessing steps, producing FOR-

TRAN .f files from Force .frc files specified in the argument list. The preforce shell

script is intended as a debugging convenience, as the UNIX FORTRAN compiler used

by the force command will give line numbers referring to the .f file when referencing

errors.

The force, forcerun, and preforce commands are executable from any directory,

and we recommend that frequent users of Force include aliases for these shell scripts

in their .cshrc files or links to them in their own bins. This is done by adding:

/usr/unsupported/bin

to your .login search path. All three commands, when invoked with no arguments,

will print a help message illustrating their use. The sections below describe features

and options of the commands that are specific to Flexible, Encore, Sequent, Alliant,

Cray and Convex parallel computers.

IV A. Flex/32 (Flexible Computer Corp.)

The shell scripts force, forcerun, and preforce, typically are installed in the

lust/local/bin directory on the Flex/32[3].

The force command invokes both a Flexible Computer Corporation preproces-

sor[4] and the Force preprocessor to generate .cf files from .frc files in the argument

list. The Force command will accept all UNIX FORTRAN options. The syntax is as

follows:

force [FORTRAN options] <filename list>

25

For example:
force matmul.frc init.frc subs.f
force -o test.exe -h cfg.8 testLfrc

The forcerun command is used to execute a Force program.

syntax:

forcerun <executable file> <number of processoLs> _

forcerun test.exe 18

For example:

test2.frc

It has the following

On the Flex/32, preforce invokes the Flexible Computer Corporation Concurrent

FORTRAN preprocessor as well as Force. preforce accepts files ending with an .frc

or .cf extension and creates the .f FORTRAN equivalents. There are two options. The

-el option invokes only Force preprocessor, creating .el files from .frc source files. The

-a option creates "all files": .of, .f, .su.f, .sh.f, and .CF.I. When used without options,

preforce will create only .f files. The syntax is as follows:

preforce <filename>

For example:

[filename]

preforce thisfile.frc

IV B. Multimax (Encore Computer Corp.)

The shell scripts force, forcerun, and preforce, typically are installed on a bin

directory on the Multimax (Encore)[5]. For the Multimax, force preprocesses .frc files

in the argument list producing .f files, and then uses the standard FORTRAN compiler.

The force command will accept all FORTRAN options. The syntax is as follows.

force [FORTRAN options] <filename list>

For example:

force -o matmul.exe matmul.frc x.f

The forcerun command is used to execute a Force program. It has the following

syntax:

forcerun <executable file> <number of processes>

For example:

forcemn matmul.exe 8

26

The preforce command performs only the preprocessing steps, producing FOR-

TRAN .f files from Force .frc input files. The syntax is as follows:

preforce <filename>

An example:

[filename]

preforce matmul.frc

IV C. Balance (Sequent Computer Corp.)

The shell scripts force, forcerun and preforce, typically are installed on the

/usr/Iocal/unsupp/force directory on the Sequent Balance. For the Sequent, the force

command preprocesses .frc files in the argument list producing Silicon Valley. The

force command accepts all FORTRAN compiler options. The syntax is as follows:

force [FORTRAN options] <filename list>

For example:

force -o matmul.exe matmul.frc x.f

The forcerun command is used to execute a Force program. It has the following

syntax:

forcerun <executable file> <number of processes>

For example:

forcerun matmul.exe 8

The preforce command performs only the preprocessing steps, producing FOR-

TRAN .f files from Force .frc input files. The syntax is as follows:

preforce <filename> [filename...]

For example:

preforce matmul.frc

IV D. Alliant FX/Series (Aliiant Computer Systems Corp.)

The shell scripts force, forcerun, and preforce, typically are located in a bin

directory on the Alliant FX/8. For the Alliant, the force command preprocesses .frc

files in the argument list producing .f files, and then uses the FX/FORTRAN compiler.

The force command accepts all options associated with ithe FX/FORTRAN compiler,

except that it ignores the concurrency option invoked either locally or globally. The

27

force command by itself invokes global optimization and vectorization options. If

suppression of vectorization is desired the NOVECTOR directive should be used inside

the source program. The syntax is as follows.

force [FX/FORTRAN options] <filename list>

For example:

force -o matmul.exe matmul.frc sub.f

force -o test.exe -DAS testl.frc test2.frc tl.f

The forcerun command is used to execute a Force program. It has the following

syntax:

forcerun <executable file> <number of processes>

For example:

forcerun matmul.exe 4

The preforce command performs only the preprocessing steps, producing FOR-

TRAN .f files from Force .fro input files. The syntax is as follows:

preforce <filename> [filename,...]

For example:

preforce matmul.frc

IV E. Cray 2 (Cray Research, Inc.)

The shell scripts force, forcerun, and preforce, typically may be found in the

/usr/unsupported/bin directory on the Cray 2 (and Cray Y-MP) supercomputers, with

four (and eight) processors respectively. To use these commands you simply add

/usr/unsupported/bin to your .login search path. For Cray supercomputers, the force

command preprocesses .frc files in the argument list producing .f files, which are com-

piled with the CFT77 FORTRAN compiler. It also invokes the FORTRAN compiler

for each .f file in its argument list. The force Command accepts all options associated

with the CFT77 FORTRAN compiler, except for the -o option. It calls the segment

loader, SEGLDR, for program loading. Since SEGLDR and CFT77 both have -o

options with different meanings, the force command substitutes -O for the Cb"I77 fB-o

and reserves fB-o for the SEGLDR options. The force command by itself invokes

global optimization and vectorization options. The syntax is as follows:

force [FORTRAN options] <filename list>

28

For example,(see/usr/unsupported/demo/force/ge.frcfor parallelLINPAK
gausseliminationcodeusingForce)

force -o ge ge.frc

In addition, the force command accepts .frc, .f, .o and .a files:

force -o test.exe test.frc tl.f t2.o liba.a

The forcerun command is used to execute a Force program. It has the following

syntax:

forcerun <executable file> <number of processes>

forcerun ge 4

The preforce command performs only the preprocessing steps, producing FOR-

TRAN .f files from Force .frc input files. The syntax is as follows:

preforce <filename>

For example:

[filename,...]

preforce ge.frc

IV F. Cray Y-MP (Cray Research, Inc.)

The shell scripts force, forcerun, and preforce, typically are located in the

/usr/unsupported/bin directory on the Cray Y-MP and their function and behavior are

identical to that found on the Cray 2. The user may specify up to eight processors on

the forcerun command. The user should find a speedup by a factor of 2 (for scalar)

and 3 (for vector) operations on the Cray Y-MP when compared to the Cray 2. How-

ever, the user may be required to use the Solid State Disk memory of the Cray Y-MP

for large problems, as only 8 mw of memory is available (32 mw for special dedicated

mode). All other functions of Force on the Cray Y-MP are identical to those on the

Cray 2 just described.

IV G. Convex 220 (Convex Computer, Inc.)

The shell scripts, force, and preforce, may be found in the/usr/Iocal/bin direc-

tory on the Convex 220 and their function and behavior are similar to that found on

the Cray Computers just described. However, the current implementation of Force on

the Convex 220 uses UNIX tasks rather than the Convex 220 parallel directives. The

29

useof UNIX tasksrather than Convexdirectivesmay reducethe efficiency of Force

on the Convex when compared to its efficiency on other computers. The user is

currently restricted to use only two processors on the Convex 220.

V. Sample Program Listing

**

* Force demonstration program

* This program normalizes a square matrix by its largest element.

* An external Force module, INTMAT, is called to initialize the

* matrix. Another Force module, OUTMAT, is called to print the

* final matrix.
**

Force DEMO of NP ident ME

Private REAL PMAX, TEM

Private INTEGER INDEX

Shared REAL X(100,100)

Async REAL ALLMAX
Externf INTMAT

End declarations

C INTMAT is an external subroutine that will will initialize the matrix.

Forcecall INTMAT(X, 100)

C

C

C Initialize ALLMAX

Barrier

Void ALLMAX :

Produce ALLMAX = 0

End barrier

Now we must search the matrix for its greatest element...

ALLMAX holds the current maximum value

PMAX = 0

C

C

Preschedule rows of X among processors...

Each processor finds the maximum of its row in the inner loop.

Presched do 100 I=1,100

DO 200 j=l,100

TEM = ABS(X(I,J))

IF (TEM .GT. PMAX) PMAX = TEM

30

200
100

C

C

C

400
300

C

10

CONTINUE
Endprescheddo

The processorscommunicateto find theoverallmax of their local maxvals.
ConsumeALLMAX into TEM

IF (PMAX .GT.TEM) TEM = PMAX
ProduceALLMAX = TEM

Synchronize...
Barrier
End Barrier

Copy ALLMAX into PMAX

IF (PMAX .GT.0) THEN

Normalizethe matrix, dividing the laboron theouter loop.
Prescheddo 300 I=1,100

DO 400 J=l,100
X(I,J)=X(I,J) / PMAX

CONTINUE

End presched do

Barrier

End barrier

END IF

OUTMAT will perform sequential i/o...

Pcase on INDEX

Call OUTMAT(X,100)

End pcase

Join

END

SUBROUTINE OUTMAT(X,N)

INTEGER N, INDEX

REAL X(N,N)

DO 10 I=I,N

DO 10 J=I,N

write(6,*) I, J, X(I,J)

RETURN

END

31

C
C

Forcesub INTMAT(MAT,N) of NP ident ME

This parallel subroutine will initialize the matrix MAT

to a "test" value.

INTEGER N

REAL MAT(N,N), GEN

End declarations

C

30

20

Presched do 20 I= I,N

DO 30 J= 1,N

The sequential function GEN is used to generate values.

MAT(I,J) = GEN(I,J)

CONTINUE

End presched do

RETURN

END

C

REAL FUNCTION GEN(I,J)

0.0 < GEN <= 1000.0

INTEGER I,J

IF ((I+J) .GE. 1) THEN

GEN = 1003.0 / (I+J)

ELSE

GEN = 1000.0

END IF

RETURN

END

32

VI. References

1. Jordan, H. F., "Structuring parallel algorithms in an MIMD, shared memory

environment," Parallel Computing, Vol. 3, No. 2, pp. 93-110, May 1986.

2. Lusk, E. L., and Overbeek, R. A., "Implementation of monitors with macros: A

programming aid for the HEP and other parallel processors," Technical Report

ANL-83-97, Argonne National Laboratory, Argonne, IL, Dec 1983.

3. Jordan, H. F., "The Force on the Flex: global parallelism and portability," ICASE

Report No. 86-54, NASA Langley Research Center, Hampton, Virginia, August,
1986.

4. Anon., Flex�32 Multicomputer: System Overview, Flexible Computer Corpora-

tion, Dallas, Texas, 1986.

5. Anon., Multimax Technical Summary, Encore Computer Corporation, Marlboro,

Massachusetts, May, 1985.

33

Notes

34

Natonal Aeroroul_CS ar-,d
S_P,Ce Acirnnslralon

Report Documentation Page

1. Report No.

NASA CR-4265

2. Government Accession No.

4. Title and Subtitle

Force User's Manual -
A Portable, Parallel FORTRAN

7. Author(s}

Harry F. Jordan, Muhammad S. Benten,
Arenstor_ and Aruna V. Ramanan

Norbert S.

9. Pedorming Organization Name and Address

Computer Systems Design Group
Department of Electrical and Computer
University of Colorado
Boulder, CO 80309-0425

Engineering

12. Sponsoring Agency Name and Address

National Aeronautics and Space
Langley Research Center
Hampton, VA 23666-5225

Administration

3. Recipient's Catalog No.

5. Report Date

January 1990

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-63-01-10

11. Contract or Grant No.

NAG1-640

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: Olaf O. Storaasli

16. Abstract

This manual describes how to use Force, a parallel, portable FORTRAN on shared
memory parallel computers. Force simplifies writing code for parallel computers
and, once the parallel code is written, it is easily ported to computers on
which Force is installed. Although Force is nearly the same for all computers,
specific details are included for the Cray-2, Cray-YMP, Convex 220, Flex/32,
Encore, Sequent, Alliant computers on which it is installed.

17. Key Words (Suggested by Author(s))

Parallel FORTRAN

Computer Language
Parallel Computing

18. Distribution Statement

Unclassified-Unlimited

Subject Category 61

19. Security Classif. (of this repot)

Unclassified
20. Security Classif. (of this page)

Unclassified
21. No. of pages

36

22. Price

A03

NASA FORM 1626 OCT 86

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

NASA-Langley, 199(}

